
We'll end up talking about a lot of stuff that doesn't have to do with boomerangs just so that we have all the details we need. In fact, we'll start by talking about syringes.
So you go to a doctor and they give you a needle. The fluid in the main barrel is flowing with some speed because the nurse is pushing on the end but when it gets to the needle part what happens? Because the area of the pipe has changed the fluid must move faster to get the same amount out in the same amount of time. Maybe the diagram helps a bit.


This has to do with Bernoulli's equation (I swear this is the only equation that we will need in order to understand boomerangs so don't get scared away, dear reader) which says that pressure plus velocity (squared) must stay constant. That means that if velocity is increased the pressure must go down and if velocity is decreased the pressure must increase to compensate and make sure that when you add them together they stay constant.
So what happened with the semi-truck? The truck and you form a short channel and just like the medicine in the syringe speeds up in the needle, as air passes between you and the truck it must speed-up too. BUT if the air speeds up that means that the pressure must go down between you and the truck (Bernoulli's equation) but the pressure on the other side of your car stays the same. That means that there is a stronger force on the other side pushing you towards the truck.

Good. Now lets talk about airplanes. Airplanes are like boomerangs, right? Forget about everything except the wing. The wing of an airplane is an aerofoil. The air that passes on the top of the wing is pushed up and has a longer path than the air below.


Now it's time to use our imaginations. Imagine turning a wing complete sideways . Now what happens? Well for one thing there is no force counteracting gravity and it will fall but there is a force pushing it sideways. The side ways force will make the wing go forwards and sideways. It will curve but it won't quite go turn and travel in a circular path just like a boomerang.
BUT this has a bigger problem. What? Well think of a pencil that you balance on it's tip - and you laugh at me and say, "how could I balance a pencil on it's tip. The smallest bump imaginable would cause it to fall over." Right! As it tips gravity can enact more and more torque on it since as it tips the centre of gravity moves further and further away from straight over the fulcrum (like where the pencil is touching the table).
Our imaginary turning wing is even worse. If it started to tip (as it definitely will) then not only would gravity make it tip faster and faster but also soon the lift would be pointing down more and more. Our sideways wing will flip over really fast and as soon as that happens it's not going to move in a circle anymore. It will just crash downwards. Maybe the series of diagrams illustrates it.


So let's spin our wing. The spinning will cause the wing to be staple and it will move in a strafing path rather than tipping.





If this was too long an explanation then you should check out
avkids
Boomerang Shop
If this was too short and you were saying to yourself, "It doesn't mean anything if it's not expressed mathematically" then the websites for you would be
Unspinning the Boomerang
Boomerangs.com
And if you still aren't satisfied check out this really in depth look at
Research Support Technologies
3 comments:
Ah. Very enlightening and well written.
Beautifully explained.
But how did Mowgli got it all figured out! ;)
Did Mowgli really have a boomerang?!?! I don't remember.
Post a Comment